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For the exploration of the dominant aerodynamic noise sources, the pressure fluctuations
in the exit plane (near field) of the propfan model CRISP (Counter Rotating Integrated
Shrouded Propfan) were measured with conventional 1/4 inch microphones. The pressure
field of the tone components was resolved into a distribution of duct modes. Knowledge
of the dominant modes allows conclusions about the dominant noise generation
mechanisms, because the different noise sources inside the propfan create different sets of
modes. The CRISP concept is developed by Motoren- und Turbinen-Union München
(MTU). The experimental propfan has two counter-rotating rotors of 0·4 m diameter and
equal speed. The shroud is supported by seven struts located downstream of the second
rotor. Measurements were made with equal (B1 =B2 =10) as well as unequal
(B1/B2 =10/12) blade numbers and under different operational conditions. The highest
overall harmonic levels were found for the configuration with equal blade numbers. In this
case, the blade passing frequency component is generated mainly by the rotor 2/struts
interaction, and the higher blade tone harmonics, which dominate the overall tone noise
level, are produced by the interaction of the two rotors. In the case of unequal blade
numbers, all even harmonics of the shaft frequency (H=2, 4, 6, . . . ) can be generated by
the rotor 1/rotor 2 interaction. The harmonics below H=22, however, are excited as
non-propagational modes only and were found to have small amplitudes in the exit plane.
The rotor 1/rotor 2 interaction is the main noise generation mechanism for the
configuration with a short axial distance between the rotors. When the rotor distance is
enlarged, the rotor/rotor interaction noise is reduced and, as a consequence, the
contributions from the rotor/struts interactions become important. In addition to the
experiments, a theoretical method is described for the prediction of the frequencies and
azimuthal modes generated by two rotors with arbitrary speeds, directions of rotation and
blade numbers. This method is helpful for the design of low noise rotor systems.
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1. INTRODUCTION

In the next generation of civil aircraft engines, the bypass ratio will be increased to reduce
the specific fuel consumption as well as the exhaust emissions. The bypass ratio of today’s
civil aircraft engines is of the order of 1:6. One conceptual design of future high bypass
aircraft engines is schematically shown in Figure 1. The envisaged bypass ratio of the
technology concept CRISP (Counter Rotating Integrated Shrouded Propfan), which is
being developed by Motoren- und Turbinen Union München (MTU), is up to 1:20, with
a predicted saving in specific fuel consumption of nearly 20%. The bypass flow is generated
by two counter-rotating rotors, which are driven by a core engine. The shroud is supported
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Figure 1. A schematic description of the CRISP aircraft engine.

by struts located downstream of the rotors. Guide vanes are not necessary in this design,
because the swirl of the first rotor is removed by the second rotor. The core engine will
be the same as in existing engines; only the rotor system driving the bypass flow is to be
newly designed. A scaled down model with a 400 mm rotor diameter was constructed by
MTU for aerodynamic and acoustic testing, and is shown in Figures 2 and 3. In the
experimental model, the two counter-rotating rotors are driven by a compressed air turbine
instead of a core engine.

The unsteady pressure field in the exit plane of the CRISP 0·4 m model is measured by
using conventional 1/4 inch condenser microphones with nose cones. The spatial
distribution of the complex pressures is then resolved into a distribution of acoustic duct
modes with the following objectives.

(i) There are four source mechanisms which can be responsible for the blade passing
frequency component and its harmonics. The first mechanism is the interaction between
the inlet flow and the blade row of the first rotor; the second mechanism is the interaction
between the two counter rotating rotors; the third is the interaction between the second
rotor and the struts; and the fourth mechanism, finally, is the interaction between the wake
flow from the first rotor, which is convected through the second blade row, and the struts.
Each interaction process generates a characteristic set of spinning modes, and if the actual
mode distribution in the exit plane is known, one can conclude what the dominant source
mechanisms for the different tone components are.

(ii) Knowledge of the dominant spinning duct modes is also necessary to tune optimally
the acoustic treatment (lining) of the shroud to achieve maximum noise reduction and,
also, to devise efficient active noise control systems.

Figure 2. A schematic of the CRISP 0·4 m propfan model.
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Figure 3. The experimental set-up in the open test section of the German–Dutch Wind Tunnel (DNW).

(iii) One can establish an experimental technique for assessing the tonal noise
characteristics of aircraft engines which does not require ideal acoustic environmental
conditions, i.e., free field conditions.

(iv) One can predict the sound pressure radiated into the far field based on the acoustic
pressure modes measured in the acoustic near field; see the papers by Holste [1, 2]. The
more detailed the experimental near field data are, the better is the accuracy of the
predicted far field sound pressure.

The measurements were performed in the open test section of the German–Dutch Wind
Tunnel (DNW, Deutsch Niederländischer Windkanal). In the first series of measurements,
the CRISP model with two counter-rotating rotors of equal speed and blade numbers
(B1 =B2 =10) was studied; the axial distance between the rotors was RD=97·3 mm. To
achieve a reduction in the tonal noise, unequal blade numbers were used on the two rotors
for the second set of experiments, B1/B2 =10/12; furthermore, two configurations with
axial rotor distances of RD=97·3 mm and RD=177·3 mm were investigated. These
propfan configurations were also tested in the DNW at different thrust conditions and
wind tunnel speeds.

In section 2, the experimental mode analysis technique is presented together with a
numerical simulation that shows the influence of measurement errors on the resultant
mode distribution. A theoretical analysis is presented in section 3 for the frequency
components and azimuthal duct modes generated by the interaction of two rotors of
arbitrary speed (in both magnitude and direction) and blade numbers. This interaction
model is helpful for the design of low noise rotor systems. Experimental results are
presented in section 4 for the influence of the blade numbers and the axial distance between
the two rotors on the frequency spectra and acoustic mode distributions generated in the
exit plane.

2. TEST FACILITIES AND MODE ANALYSIS

The principal design of the propfan model is shown in Figure 2. The two rotors are
2R=0·4 m in diameter and driven by a compressed air turbine via a spider gear. The
shroud is supported by seven struts located downstream of the second rotor. The inner
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diameter in the outlet plane is 0·4 m and the hub-to-tip ratio is 0·5. For the unsteady
pressure measurements, a microphone traversing system was mounted directly on the hub
behind the exit plane: see Figure 4. There are two microphone rakes placed on a
rotatable cylinder at 180° angular distance. Six small DC motors and a gear drive were
used to move the cylinder together with the microphones in the circumferential direction.
With this arrangement, the pressure fluctuation were measured at 120 equally spaced
angular positions (D8=3°). Each rake carries three 1/4 inch microphones with nose cones
at the radial positions r/R=0·96, 0·785 and 0·61. The maximum flow Mach number in
the exit plane is about M=0·6; the maximum wind tunnel flow Mach number is M=0·22.

2.1.     

For the acoustic mode analysis, the circumferential and radial distributions of both the
magnitude and phase of each spectral component of interest need to be known. Three
two-channel FFT analyzers (HP-3562A) were used to measure the spectra of the six
microphone signals. The analyzers were triggered by a one-pulse-per-revolution signal to
obtain the averaged complex pressure spectra. In this way all non-rotational signal
components, such as the turbulent pressure fluctuation of the jet flow, were suppressed.
To eliminate leakage effects due to variations of the impeller speed, the sampling
frequencies of the FFT analyzers were synchronized with the rotor speed. The complex
frequency spectra were stored digitally for the numerical mode analysis, which could be
carried out directly after completion of a circumferential traverse. For further analyses,
all signals were stored on a digital tape recorder.

The numerical mode analysis used is described in references [2, 3] and can be
summarized as follows. The sound pressure in the outlet plane can be resolved into
azimuthal modes Am (rj , v) for each frequency v and each radial position rj by using the
relation

ps, j (v)= s
a

m=−a

Am (rj , v) eim8s. (1)

Here the complex quantity ps, j (v) describes the measured pressure amplitude and phase
at the radial position rj and the circumferential positions 8s .

Figure 4. A view of the microphone traversing system mounted on the hub.
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The Nyquist Sampling Theorem limits the range of azimuthal modes which can be
determined from a set of experimental data. A mode can be determined uniquely if its
azimuthal wavelength 2p/m is larger than twice of the distance D8 between adjacent
measurement points. From this it follows, for the highest azimuthal mode order mg = =mg =,

2p/mg q 2D8=2(2p/N8 )c mg QN8 /2. (2)

N8 is the number of measurement circumferential positions. In the present case, N8 =120
(D8=3°), and hence analysis of the azimuthal modes is possible in the range m=−59
to m=59. If azimuthal modes of even higher order exist in the outlet plane, i.e., mode
orders =mx =qN8 /2, an aliasing effect occurs, and these modes appear in the mode analysis
range at the mode order m=mx + vN8 with v=· · · −1, 0, 1. . . .

A discrete Fourier transform with respect to the circumferential angle 8 was used to
determine the azimuthal modes from the circumferential distribution of the complex
pressure, for each radial position. Alternatively, a linear system of equations can be
established and solved by using the least squares fit method.

In a second step the azimuthal modes with complex amplitudes Am (rj , v) are expanded
into a series of radial modes with complex amplitudes A'mn (v):

Am (rj , v)= s
a

n=0

fmn (smnrj /R)A'mn (v),

fmn (smnrj /R)= Jm (smnrj /R)+QmnYm (smnrj /R), (3)

Here, Jm and Ym are the Bessel and Neumann functions of order m, and the eigenvalues
smn and Qmn can be determined by using the boundary condition of vanishing particle
displacement at the rigid walls of hub and shroud. A linear system of equations was
established for each azimuthal mode order m and solved by using the least squares fit
method. Knowledge of the radial mode distribution A'mn (v) is necessary for prediction of
the noise radiated into the acoustic far field (see references [1, 2]) as well as for the optimum
design of active or passive noise control measures.

For the presentation of experimental results in section 4, the mode amplitudes A'mn are
normalized by

A2
mn =(Cmn /R2) =A'mn =2, (4)

where

Cmn = pR2[(1−m2/s2
mn) f 2

mn (smn )− (m2 −m2/s2
mn) f 2

mn (smnm)]. (5)

m is the ratio of the inner to the outer radius. The modal factor Cmn results from integrating
the sound intensity over the exit plane of the propfan (see references [2, 4, 5]). The
normalized mode amplitudes Amn are representative of the modal sound power.

2.2.    

In the following, a theoretical simulation of measurement errors in both amplitude and
phase is performed to check the accuracy of the mode analysis technique. First, the
influence on azimuthal mode distributions is considered. Beginning with a given azimuthal
mode distribution, which is depicted in Figure 5(a), the corresponding circumferential
pressure distribution is calculated. Then random errors within 20·5 dB in amplitude and
25° in phase are applied to the pressures at the respective measurement points, and an
azimuthal mode analysis is performed with this set of simulated experimental data; the
result is shown in Figure 5(b). The mode distribution shown in Figure 5(c) was obtained
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Figure 5. Simulation of measurement errors on the azimuthal mode distribution obtained from the numerical
mode analysis technique. (a) No error simulation; (b) amplitude 2 0·5 dB and phase 2 5° uniformly distributed
over all measurement points; (c) amplitude+0·5 dB and phase+5° added in the range of 8°=183°–360°.

by considering a constant measurement error of 20·5 dB in amplitude and +5° in phase
for only the measurement points from 8=183° to 360°; this was to simulate a mismatch
between two microphones placed at the same radius but 180° apart; compare with the
microphone traverse system described at the beginning of this section. The error simulation
clearly shows that the original mode distribution is recovered by the present mode analysis
technique, and that the amplitude and phase errors merely result in additional modes
which have amplitudes of more than 30 dB below the original mode amplitudes.

A similar error simulation was also carried out for the radial mode analysis. The radial
mode distribution depicted in Figure 6(a) was assumed to calculate the complex pressure
amplitudes at the 360 circumferential measurement points (D8=3°) for the three radial
distances r/R=0·96, 0·785 and 0·61 from the axis. A random error in the range of
20·5 dB in amplitude and 25° in phase was applied to these pressures, and the radial
mode analysis described in the foregoing was performed. The result is shown in
Figure 6(b). Furthermore, to simulate errors in microphone calibration, a constant error
of 20·5 dB in amplitude and 5° in phase was considered for all measurement points in
the range from 8=183° to 360°; the result of this exercise is shown in Figure 6(c). Similarly
to the error simulation applied to the azimuthal mode analysis, the given modes appear
almost unchanged in the mode distributions of Figures 6(b) and 6(c), and the additional
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modes caused by the measurement errors have amplitudes more than 20 dB lower in level
than the original ones.

The actual measurement errors are even smaller than in the above theoretical simulation,
i.e., 20·1 dB in amplitude and 22° in phase, so that the accuracy is better than shown
in Figures 5 and 6.

3. AERODYNAMIC INTERACTION OF BLADE ROWS

The aerodynamic noise generation mechanism responsible for the tone noise generation
of the CRISP propfan model have already been discussed in the introduction. The
azimuthal modes produced by the interaction between the inlet flow and a rotor or between
a rotor and guide vanes or struts are described in the Tyler and Sofrin famous paper [6],
and the case of two counter-rotating rotors of equal speed and with equal blade numbers
was treated by Holste and Neise [3]. Holste [2], finally, extended the analysis to the general
case of rotor/rotor interaction with arbitrary blade numbers and rotor speeds, which
includes the previous interaction models. Holste’s model, which is described below, allows
prediction of all tone frequencies and azimuthal mode orders which can be generated by
the interaction of two arbitrary rotors. Therefore, it is highly useful for the design of low

Figure 6. Simulation of measurement errors on the radial mode distribution obtained from the mode analysis
technique. (a), (b), (c) as Figure 5. Radial mode order: ——, n=0; – – –, n=1; ---, n=2.
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noise rotor systems, because the blade numbers and rotational speeds of the rotors can
be selected in such a way that mainly non-propagational modes are excited, which have
a poor radiation efficiency.

3.1.    / 

The two rotors considered have B1 and B2 blades, and their angular velocities are
denoted by V1 and V2, respectively, where the mathematical sign indicates the direction
of rotation. For a counter-rotating system, the signs of V1 and V2 are different.

The pressure field generated by the rotor/rotor interaction can be derived from the Tyler
and Sofrin case of rotor/stator interaction by introducing a co-ordinate system 8R which
is attached to the second rotor. In this moving system of co-ordinates, the interactions
between the rotors are the same as the interaction between a rotor and a stator, where
the blades of the second rotor represent the stator vanes, and the speed of rotor 1 is equal
to VR =V1 −V2. According to Tyler and Sofrin [6], the pressure field due to the interaction
is given by

pR(8R , t)= s
a

hR =−a

s
a

mR =−a

AmRhR eimR8R eihRB1VRt

with mR = k'B2 − hRB1 and VR =V1 −V2. (6)

Here, the quantities in the rotating system are denoted by the subscript R. AmRhR represents
the amplitude of the azimuthal mode mR generated at the blade tone harmonic hR , which
is observed in the co-ordinate system moving with the second rotor. AmRhR is zero for all
mR $ k'B2 − hRB1.

The circumferential angle 8 as measured in the fixed frame of reference is related to the
angle 8R in the rotating system by

8=8R +V2t c 8R =8−V2t. (7)

Introducing this co-ordinate transformation into equation (6) yields the following
expression for the pressure field in the fixed co-ordinate system,

p'(8, t)= s
a

hR =−a

s
a

mR =−a

AmRhR eimR8 ei(hRB1VR −mRV2)t with mR = k'B2 − hRB1, (8)

and when the condition for mR is inserted into the second exponent together with
VR =V1 −V2 one obtains

p'(8, t)= s
a

hR =−a

s
a

mR =−a

AmRhR eimR8 ei[hRB1V1 − k'B2V2]t with mR = k'B2 − hRB1. (9)

Here the mode order mR and harmonic numbers hR are defined in the rotating system. The
usual expression for the pressure field of the tone components in the fixed co-ordinate
system is

p'(8, t)= s
a

H=−a

s
a

m=−a

AmH eim8 eiHVg t. (10)

Vg is the fundamental frequency of the blade tone spectrum generated by the rotor/rotor
interaction, which corresponds to the time period Tg =2p/Vg after which the position of
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the two rotors relative to one another is repeated. In case of counter-rotating systems with
equal speed (V1 =−V2), the time period is equal to the time needed for one revolution,
so that Tg =2p/V1. If the rotational speeds are unequal, the relative positions of the rotor
blades may repeat after more than one revolution. The numbers of revolutions necessary
for each rotor to complete one period of the interaction pattern are denoted by u1 and u2.
Since the time period Tg is equal to both rotors, one has the relation

u1T1 = u2T2 =Tg with T1 =2p/V1 and T2 =2p/V2. (11)

Rearranging terms leads to

u1(2p/V1)= u2(2p/V2)=2p/Vg c V1 = u1Vg , V2 = u2Vg , (12)

where Vg is the largest common factor of the two rotor speeds V1 and V2, and u1 and u2

are integer values. Introducing equation (12) into equation (9) leads to

p'(8, t)= s
a

hR =−a

s
a

mR =−a

AmRhR eimR8 ei(hRB1u1 − k'B2u2)Vg t with mR = k'B2 − hRB1. (13)

Comparison of equations (10) and (13) shows that AmRhR =AmH , and the conditions for H
and m in the fixed co-ordinate system are

H= hRB1u1 − k'B2u2 and m= k'B2 − hRB1. (14)

It is useful to introduce the highest common factor FB (integer value) of the blade numbers
B1 and B2:

b1 =B1/FB , b2 =B2/FB c B1 =FBb1, B2 =FBb2. (15)

Inserting equations (15) into equation (14) and replacing hR by
k0=. . . , −2, −1, 0, 1, 2, . . . , one obtains from equation (10), with H= hFB and
AmH =Amh ,

p'(8, t)= s
a

h=−a

s
a

m=−a

Amh eim8 eihFBVg t with the conditions 6m=FB (k'b2 − k0b1)
h= k0b1u1 − k'b2u2 7. (16)

Equation (16) reveals that, for blade number combinations with FB q 1, not all harmonics
of Vg are generated by the rotor/rotor interaction, but only multiples of FBVg . This means
that the fundamental frequency is FBVg (h=1) instead of Vg . In other words, the time
period of the interaction process is reduced from Tg to T'=Tg /FB , because the interference
pattern of the two blade rows is repeated every T' instead of Tg . Also, the azimuthal order
m of the generated modes is restricted in that m can be only multiples of FB . This means
that for designing low noise rotor systems a blade number combination with a high
common factor FB (see equation (15)) should be chosen, so that the number of
propagational modes is minimized. The above conclusions are valid for counter-rotating
as well as for co-rotating rotor systems.

By using equations (12) and (15), equation (16) can be rewritten as

p'(8, t)= s
a

H=−a

s
a

m=−a

AmH eim8 eiHVg t with the conditions 6 m= k'B2 − k0B1

HVg = k0B1V1 − k'B2V27. (17)

Here the conditions for the generated modes m and frequencies HVg depend directly on
the blade numbers B1/B2 and on the rotor speeds V1/V2.
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3.2.   -    

In the following, the case of the CRISP propfan studied experimentally is considered.
The condition V1 =−V2 leads to Vg =V, u1 =1 and u2 =−1. Introducing these relations
into equation (16) gives

p'(8, t)= s
a

h=−a

s
a

m=−a

Amh eim8 eihFBVt with the conditions 6m=FB (k'b2 − k0b1)
h= k0b1 + k'b2 7. (18)

3.2.1. Equal blade numbers
For B1 =B2 =B, FB =B, with b1 = b2 =1, and the conditions in equation (18) become

m=B(k'− k0) and h= k'+ k0. (19)

The expression k'+ k0 yields all integer numbers for h by arbitrary values of k' or k0. h
is the harmonic order of the fundamental frequency BV. To obtain m as a function of h,
the two expressions in equation (19) are combined:

m=B(2k'− h). (20)

As is to be expected, only the blade passing frequency BV and its harmonics can be
generated in this case. In the mode distribution of all harmonics, the azimuthal mode
orders m generated are spaced by two times the blade number B.

3.2.2. Unequal blade numbers
Combining the expression for m and h in equation (18) leads to

m=FB (2k'b2 − h) with h= k'b2 + k0b1. (21)

In this relationship, k' and k0 cannot assume arbitrary integer values for a given harmonic
h, if b1 q 1 and b2 q 1. Therefore, the distance Dm in the mode distribution generated
between two adjacent modes must be larger than 2k'FBb2. For h=0 the generated mode
orders can be easily derived from equation (21):

0= k'b2 + b1k0c k'b2 =−b1k0c k'=wb1, k0=−wb2 with w=. . . , −1, 0, 1, . . . .

(22)

Introducing this expression for k' into equation (21) gives, with h=0,

m=2wFBb1b2. (23)

This equation shows that the distance between modes is Dm=2FBb1b2. h=0 represents
the case of zero frequency: i.e., the steady component of the pressure field which does not
contribute to the sound radiation. However, it is expected here that a similar series of
modes is generated for all other harmonics h as well. Therefore, k' and k0 in equation (21)
are expressed as

k'=wb1 + s'h , k0=−wb2 − s0h . (24)

Introducing equations (24) into equation (21) yields

h= s'hb2 − s0h b1, m=FB (2wb1b2 +2s'hb2 − h). (25)

s'h and s0h can be interpreted as ‘‘starting values’’ for the series k' and k0 for each harmonic
h, which means that no unique values exist. However, it is sufficient to know one pair of
values (s'h , s0h ) for each harmonic to describe the entire series. Additionally, equation (25)
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shows that the distance between mode orders in the mode distribution generated is equal
to 2FBb1b2 for each harmonic.

Finally, the pressure field of two coupled counter-rotating rotors is given by
(V=V1 =−V2):

p'(8, t)= s
a

h=−a

s
a

w=−a

Amh eim8 eihFBVt

with h= s'hb2 − s0h b1 and m=FB (2wb1b2 +2s'hb2 − h), (26)

where m cannot assume all integer numbers.

3.3.          
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 

In Table 1 are listed the conditions for the frequency components and azimuthal modes
m which can be generated by the different interaction processes in the present CRISP 0·4 m
propfan model: i.e., for the case of counter-rotation at equal speeds. Here, h denotes the
harmonics of a fundamental frequency, V is the number of struts, k, k' and k0 are integers,
and FB is the largest common factor of the blade numbers B1 and B2. For the blade number
combination B1/B2 =10/12, FB =2, which means that all even harmonics of the shaft
frequency can be generated by the rotor 1/rotor 2 interaction.

The frequencies and mode orders m, which can be generated by the various interaction
processes relevant to the CRISP propfan model with B1/B2 =10/12 blades, are listed in
Table 2. H is the harmonic order of the shaft frequency. The frequencies of the harmonics
H, which are listed in the last but one column, are for the maximum rotor speed of
12 000 r.p.m. In the last column, the magnitudes of the highest azimuthal order (=m =, 0)
of the modes are given, which are propagational in the annulus of the propfan’s exit plane
at the frequency of the harmonic H considered. The cut-on frequency of a mode (m, n)
increases with the radial mode order n (nq 0). In the list of modes generated by the various
interaction mechanisms, the mode order numbers printed in bold italic characters
correspond to propagational azimuthal modes (m, 0). At lower rotor speeds, the
frequencies of the harmonics decrease, and the number of propagational modes is
diminished in turn.

An expected result in Table 2 is that the interactions rotor 1/struts and rotor 2/struts
generate shaft order harmonics equal to multiples of the blade numbers B1 and B2,

T 1

Summary of conditions for the frequency components and azimuthal modes m generated by
the propfan model with counter-rotating rotors of equal speed

Source mechanism Frequency Mode order m

Uniform inlet flow/rotor 1 hB1V m= hB1

Rotor 1/struts hB1V m= hB1 + kV
Rotor 2/struts hB2V m=−hB2 + kV

Rotor 1/rotor 2
Equal blade number, B1 =B2 =B hBV m=B(2k− h)

Unequal blade number, B1 =FBb1, B2 =FBb2 hFBV 6m=FB(k'b2 − k0b1)
h= k0b1 + k'b2 7
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respectively. The azimuthal mode orders of subsequent modes are spaced by Dm=7,
which is equal to the number of struts. The interaction between the two counter-rotating
rotors generates all even harmonics of the shaft frequency, including multiples of B1 and

T 2

A list of the shaft order harmonics H and azimuthal mode orders m generated by the propfan
model CRISP with unequal blade numbers

Blade numbers B1 =10, B2 =12; H, harmonic of the shaft frequency; shaft
frequency=200 Hz; FB =2, b1 =5, b2 =5

Azimuthal modes m generated by the interactions
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV Frequency m

H Rotor 1/rotor 2 Rotor 2/struts Rotor 1/struts (kHz) cut-on
ZXXXXCXXXV ZXXXXCXXXV ZXXXXCXXXV

2 −218 −98 22 142 — — — — — — — — — — 0·4 1
4 −196 −76 44 164 — — — — — — — — — — 0·8 2
6 −174 −54 66 186 — — — — — — — — — — 1·2 3
8 −152 −32 88 208 — — — — — — — — — — 1·6 4

10 −130 −10 110 230 — — — — — −17 −10 −3 4 11 2 5
12 −228 −108 12 132 −9 −2 5 12 19 — — — — — 2·4 7
14 −206 −86 34 154 — — — — — — — — — — 2·8 8
16 −184 −64 56 176 — — — — — — — — — — 3·2 9
18 −162 −42 78 198 — — — — — — — — — — 3·6 11
20 −140 −20 100 220 — — — — — −20 −13 −6 1 8 4 12
22 −118 2 122 242 — — — — — — — — — — 4·4 14
24 −216 −96 24 144 −11 −4 3 10 17 — — — — — 4·8 15
26 −194 −74 46 166 — — — — — — — — — — 5·2 16
28 −172 −52 68 188 — — — — — — — — — — 5·6 18
30 −150 −30 90 210 — — — — — −16 −9 −2 5 12 6 19
32 −128 −8 112 232 — — — — — — — — — — 6·4 21
34 −106 14 134 254 — — — — — — — — — — 6·8 22
36 −204 −84 36 156 −13 −6 1 8 15 — — — — — 7·2 24
38 −182 −62 58 178 — — — — — — — — — — 7·6 25
40 −160 −40 80 200 — — — — — −19 −12 −5 2 9 8 26
42 −138 −18 102 222 — — — — — — — — — — 8·4 28
44 −116 4 124 244 — — — — — — — — — — 8·8 29
46 −94 26 146 266 — — — — — — — — — — 9·2 31
48 −192 −72 48 168 −8 −1 6 13 20 — — — — — 9·6 32
50 −170 −50 70 190 — — — — — −15 −8 −1 6 13 10 34
52 −148 −28 92 212 — — — — — — — — — — 10·4 35
54 −126 −6 114 234 — — — — — — — — — — 10·8 36
56 −104 16 136 256 — — — — — — — — — — 11·2 38
58 −82 38 158 278 — — — — — — — — — — 11·6 39
60 −180 −60 60 180 −10 −3 4 11 18 −18 −11 −4 3 10 12 41
62 −158 −38 82 202 — — — — — — — — — — 12·4 42
64 −136 −16 104 224 — — — — — — — — — — 12·8 44
66 −144 6 126 246 — — — — — — — — — — 13·2 45
68 −92 28 148 268 — — — — — — — — — — 13·6 46
70 −70 50 170 290 — — — — — −14 −7 0 7 14 14 48
72 −168 −48 72 192 −12 −5 2 9 16 — — — — — 14·4 49
74 −146 −26 94 214 — — — — — — — — — — 14·8 50
76 −124 −4 116 236 — — — — — — — — — — 15·2 52
78 −102 18 138 258 — — — — — — — — — — 15·6 53
80 −80 40 160 280 — — — — — −17 −10 −3 4 11 16 55
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B2. At each of these harmonics, the difference in the azimuthal order of subsequent modes
Dm is 120.

Most of the shaft order harmonics listed in Table 2 are produced by only one of the
three interaction mechanisms involved. Overlapping occurs at H=60 (interactions rotor
1/struts and rotor 2/struts) and at the shaft orders equal to multiples of the two blade
numbers. At the frequencies where overlapping is observed of the interactions rotor
1/struts, rotor 2/struts, and rotor 1/rotor 2, the latter produces only non-propagational
modes, except for H=72, the amplitudes of which decay while propagating from the
rotors to the exit plane.

The result of this analysis applied to the present test configuration shows that
the interaction between two counter-rotating rotors of equal speed and with
B1 =12, B2 =10 blades produces all even harmonics of the rotor shaft frequency: i.e.,
H=2, 4, 6. On the other hand, all rotor harmonics below the order H=22 are generated
as acoustic duct modes with high azimuthal mode order which cannot propagate in the
annular engine duct and therefore can be expected to have small amplitudes in the exit
plane.

4. EXPERIMENTAL RESULTS

4.1.  

Initial tests with the CRISP 0·4 m model have shown that the microphone probes placed
in the jet flow do not interfere with the blade tone harmonic noise. Also, it was found that
the turbulence intensity of the wind tunnel flow has no measurable influence on the tone
components radiated.

In section 4.2 ‘‘typical’’ mode distributions for the first six blade tone harmonics are
shown for the case of equal blade numbers on both rotors, and in section 4.3 the results
obtained with the blade numbers B1/B2 =10/12 and with two axial distances between the
rotors are discussed. A comparison of the overall tone noise levels of the three propfan
configurations tested is given in section 4.4. Radial mode distributions are presented in
section 4.5.

4.2.   

In Figure 7 is shown the conventional pressure spectrum, i.e., averaged in the frequency
domain, measured at an arbitrary measurement point in the exit plane for the case of equal
blade numbers (B1 =B2 =10). The operational condition of the propfan was
representative of take-off conditions, with a relative pressure ratio of prel =0·8. prel

characterizes the engine thrust, with prel =1 at full thrust. As expected, the blade passing
frequency (B×V) and multiples thereof dominate the spectrum. At this measurement
point, the second, third and fourth harmonics have the highest amplitudes, which mainly
contribute to the overall noise level in the radiated far field. For more information about
the far field noise; see the paper by Dobrzynski et al. [7].

The azimuthal mode distributions for various tone components generated in the exit
plane were determined for different operation conditions of the propfan model. Typical
azimuthal mode distributions are shown in Figure 8 for the first six blade tone harmonics.
The blade stagger angle is the same for both rotors, b=−6°/−6°, the wind tunnel flow
Mach number is M=0·22 at zero angle of attack, a=0, and the relative pressure ratio
of the fan is prel =1 (maximum thrust). The mode distributions measured on different
radial distances from the axis are labelled by different line symbols, while the various point
symbols indicate which interaction mechanism is responsible for the particular azimuthal
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Figure 7. The sound pressure spectrum in the outlet plane of the CRISP 0·4 m model; B1 =B2 =10,
RD=97·3 mm.

mode. Two vertical arrows in each graph mark the range of propagational modes in the
annulus between shroud and hub.

For all harmonics, only propagational modes occur in the exit plane, the other modes
are of much lower amplitude. This indicates that the shroud helps reduce the noise in
comparison with unducted propfans. For all blade tone harmonics, the mode distributions
obtained for the three radial distances from the axis exhibit the same characteristic
behaviour: i.e., the dominant modes are the same at all three radii. The amplitude of a
particular azimuthal mode depends on the radial position, which indicates that higher
radial modes exist, as will be shown in section 4.5.

At some blade tone harmonics, modes occur which are neither generated by the
interaction between the two rotors nor by the interaction between a rotor and the struts.
As was shown by Zandbergen et al. [8], these modes are formed by a transformation of
modes at the struts. For example, a mode that is generated by the rotor 1/rotor 2
interaction is propagated downstream until it impinges on the struts. Due to its rotation,
it interacts with the struts just like a rotor wake. As a result, this mode is spread into a
series of modes, the order numbers of which are spaced by the strut number.

While most of the blade tone harmonics are generated by the interaction between the
counter-rotating blade rows, this is not true for the blade passing frequency component.
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At this frequency, the rotor 1/rotor 2 interaction produces only evanescent modes, the
strongest of which are m=−10 and m=10. The dominant modes at the blade passing
frequency are m=3 and m=−4; the most likely cause of these is the interaction between
rotor 2 and struts; however, they can also be generated by the transformation of mode
m=10 at the struts. In any case, enlarging the distance between rotor 2 and the struts
would lower the blade passing frequency level substantially, because it would weaken both
possible source mechanisms involved: (1) the wakes from the second blade row would wash
out more over a longer distance; and (2) the non-propagational mode m=10 produced
by the rotor/rotor interaction would decay more. In both cases the interaction forces on
the struts would be diminished.

In the mode distributions of the second harmonic, the mode m=0 generated by the
interaction between the two rotors dominates the sound field and is mainly responsible for
the noise radiation at this tone component. The second most important modes m=−6
and m=13 are produced either by the rotor 2/struts interaction or, less likely, by the
transformation of the mode m=20 at the struts.

The mode distributions for the blade tone harmonics 3–6 show that modes which were
produced by a mode transformation at the struts can have amplitudes almost as high or
even higher than the primary mode. For example at the third blade tone harmonic, the
modes m=−17, 11, 18 originate from the mode m=−10; and similarly, for the fourth
harmonic, the modes m=−27, −13, 15, 22, 29 from m=−20, and m=−22, 13, 27
from m=20.

It is obvious from the above discussion that the levels of the blade tone harmonics 2–6
can be reduced most efficiently by increasing the distance between the two rotors. Also,
unequal numbers of blades should be used, so that interaction modes with high mode
orders are generated, which have a lower acoustic radiation efficiency than the low order
ones.

4.3.   

In Figure 9 is shown a pressure spectrum measured in the outlet plane of the propfan
model with unequal blade numbers B1/B2 =10/12. In agreement with the theoretical
considerations presented in section 3.3, the dominant tone components are the even
harmonics of the shaft frequency V. For these harmonics, the azimuthal mode
distributions were calculated, and three examples are depicted in Figure 10; i.e., for the
10th, 24th and 32nd shaft orders. The shaft rotational frequency was 186·1 Hz and the
axial distance between the rotors was RD=97·3 mm. The range of propagational modes
is indicated by two vertical arrows. Clearly, the mode distributions in the exit plane are
dominated by these propagational modes. Note that the mode orders of the propagational
modes predicted in Table 2 are exactly the ones with the highest amplitudes in Figure 10.
The mode m=−8, produced by the rotor 1/rotor 2 interaction, has the highest amplitude
in the mode distribution for the shaft order H=32. The presence of the modes m=−22,
−15 and m=13, 20 cannot be explained by any of the interaction mechanism discussed
above, but only by a mode transformation due to the interaction of the mode m=−8
with the struts. Similar effects were already shown for the case of equal blade numbers
in section 4.2 and in reference [3].

In Figure 10, modes due to the rotor 1/struts or rotor 2/struts interactions are present
only in the mode distributions of the shaft orders H=10 and H=24. However, these
modes may also be generated by a mode transformation at the struts. This effect can be
illustrated by using the mode distribution of the shaft harmonic order H=10. The mode
m=−10 is generated by the rotor 1/struts interaction as well as by the rotor 1/rotor 2
interaction. The mode m=−10 does not propagate and therefore decays exponentially



.   . 656

with increasing distance from the rotor. Nevertheless, it may still be strong enough to
interact with the struts, because the distance between the rotors and the struts is fairly
short, and as a result propagational modes of the orders m=−3 and 4 are produced.
Similar effects can be observed at other shaft order harmonics; compare the cases H=12,
24, . . . and H=20, 30, . . . in Table 2. The above discussion has shown that, for some
tone components, a unique determination of the main source mechanisms is not possible,

Fig. 8a
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Figure 8. The azimuthal mode distribution for three radial positions for the blade tone harmonics (a) 1–3 and
(b) 4–6. Equal blade numbers B=B1 =B2 =10; blade tone=BV=1762 Hz (kR=6·5), (, Rotor 1/rotor 2; w,
rotor 2/struts; q, rotor 1/struts; × rotor 1/rotor 2 and rotor 1/struts or rotor 2/struts; r, other modes. ——,
r=192 mm; – – –, r=157 mm; ---, r=122 mm. b=−6°/−6°; prel =1·0; M=0·22; a=0.

and one has to assume that both of the possible interaction mechanisms contribute.
However, as was shown before for the case of equal blade numbers, knowledge of which
of the two possible source mechanisms is more important is not required, insofar as finding
ways of noise reduction is concerned, because when the distance between the rotors and
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Figure 9. The sound pressure spectrum in the outlet plane for the case of unequal blade numbers;
B1/B2 =10/12.

the struts is enlarged, the rotor 2/struts interaction mechanism is weakened on the one
hand, and on the other hand the non-propagational modes due to the rotor 1/rotor 2
interaction suffer a stronger decay. Both effects lead to a reduced emission of these tone
components.

Because of the importance of the blade tones for the overall noise, and to assess the effect
of increasing the axial distance between the rotors, the average sound pressure spectrum
in the outlet plane was determined from the 360 individual spectra measured at 120
circumferential positions (D8=3°) at r/R=0·96, 0·785 and 0·61 radial distances from the
rotor axis. In Figures 11(a) and 11(b) are plotted the averaged spectra for the rotor
distances RD=97·3 mm and RD=177·3 mm. The level difference of the two spectra is
shown in Figure 11(c). The different shading indicates which interaction mechanism is
mainly responsible for the various tone components.

The amplitudes of the shaft harmonic orders H=22, 32, 34, 42, 44, . . . , which are
generated by the two counter-rotating rotrs, are diminished substantially as the distance
between the rotors is enlarged. Hardly any change in level is observed for the harmonics
H=10, 20, . . . and H=12, 24, . . . , which are due to the rotor 1/struts and rotor 2/struts
interactions, respectively. The reason is, of course, that (i) the distance between the second
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Figure 10. The azimuthal mode distributions of three blade tone components (shaft harmonic orders) for three
radial positions; unequal blade number B1/B2 =10/12, rotor distance RD=97·3 mm; shaft rotational
frequency=186·1 Hz (kR=0·67). (a) 10×rotor shaft frequency; (b) 24×rotor shaft frequency; (c) 32×rotor
shaft frequency. (, Rotor 1/rotor 2; w, rotor 2/struts; q, rotor 1/struts; ×, rotor 1/rotor 2 and rotor 1/struts
or rotor 2/struts; r, other modes. RD=97·3 mm; b=−8°/−8°; prel =0·8; M=0·22; a=0. ——, r/R=0·96;
– – –, r/R=0·785; ---, r/R=0·61.

rotor and the struts was the same in both configurations tested, and hence the interference
of the wake flow from the second rotor with the struts remains is nearly unaltered, and
(ii) that the distance between the first rotor and the struts was relatively large to start with,
so that a further increase has almost no influence on the wake flow in the region of the
struts.
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4.4.    

To compare the overall tone noise levels of different configurations of the CRISP
propfan model at different operating conditions, the levels of all blade tone harmonics,
averaged over the cross-section of the exit plane as shown in Figure 11, were summed
energetically and are plotted in Figure 12. The black columns denote the levels obtained
with the blade numbers B1/B2 =10/12 and the enlarged rotor distance RD=177·3 mm,
the columns shaded horizontally are for the same blade numbers but with the small rotor
distance RD=97·3 mm, and the pointed shade represents the case of equal blade numbers
B1 =B2 =10 in combination with the small rotor distance. For the first two cases, the sum
was taken over all even harmonics in the range from the second to the 78th. The propfan
with ten blades on each rotor generates tone components at every tenth harmonic of the
shaft frequency only, and consequently the sum over these was taken in the range
H=10–80.

Changing the blade numbers from B1/B2 =10/10 to B1/B2 =10/12 results in a reduced
tone noise level at the relative pressure ratio prel =0·8 and a small increase at the pressure
ratio prel =0·4. Increasing the axial distance between the rotors with B1/B2 =10/12 blades
reduces the overall tone level by about 8 dB and, thus, proves to be the far more effective

Figure 11. The influence of the axial rotor distance RD on the pressure spectra in the exit plane of the CRISP
0·4 m model (average over 360 measurement points); shaft frequency V=186·1 Hz (kR=0·67), blade stagger
angle b=−8°/−8°, relative pressure ratio prel =0·8, wind tunnel flow M=0·22, angle of incidence a=0. (a)
RD=97·3 mm; (b) RD=177·3 mm; (c) difference, RD=177·3 mm to RD=97·3 mm. Q, Rotor 1/rotor 2; q,
rotor 2/struts; q..... , rotor 1/struts.q......



      661

Figure 12. The overall harmonic noise level for different operational conditions of the propfan: rotor distances
RD=97·3 and 177·3 mm; B1/B2 =10/12 and 10/10; blade stagger angle b=−8°/−8°; relative pressure ratio
prel =0·9–0·2; wind tunnel flow M=0·22 and M=0·15. Q, 10/12, RD=177·3; +, 10/12, RD=97·3; *, 10/10,
RD=97·3.

noise reduction method. As is to be expected, the tone noise level grows with the relative
pressure ratio of the propfan.

4.5.   

As described in section 2.1, the radial mode amplitudes Amn are calculated from the
azimuthal mode distributions obtained at different radial positions. The maximum number
of radial modes, which can be determined from the experimental data, is equal to the
number of circumferential measurement paths spaced over the duct radius. In this study,
measurements were performed on three different radial positions and therefore only the
radial modes n=0, 1 and 2 could be determined for each azimuthal mode order m. As
an example, in Figure 13 are shown radial mode distributions calculated from the
azimuthal mode distribution depicted in Figure 8; i.e., for the case of equal blade numbers
B1 =B2 =10 and maximum thrust (prel =1). The vertical lines represent the amplitudes
of the modes and the different line types indicate the radial mode order n for each value
of m. Calculations were carried out only for azimuthal modes m with high amplitudes in
the corresponding azimuthal mode distributions.

For most of the azimuthal modes m, not only the radial mode n=0 is found but also
the modes n=1, 2, and at some azimuthal mode orders m the amplitudes of the higher
order radial modes are larger than those of the modes n=0. It is quite possible that modes
with even higher radial mode order exist in the exit plane and, unfortunately, the radial
modes with orders nq 2 would influence the analyzed radial mode distributions in the
range nE 2 due to aliasing. Additional measurements at the radial positions would be
necessary to determine the amplitudes of the modes nq 2; this was not possible in the
present experiments. However, in a study by Holste [1, 2] the tonal noise radiation from
the exit plane of the propfan was calculated based on the experimental mode distributions
in the range nE 2 and good agreement was found with the results of the independent free
field measurements. This indicates that the radial modes of higher order are not important
in this case.

The radial mode distributions determined for various operational conditions have
similar characteristics, which can be observed in Figure 13. In the case of the second blade
tone harmonic, the plane wave mode (m, n=0, 0) is among the dominant modes. Since
the plane wave mode is propagational at all frequencies and since the acoustic radiation
efficiency of propagational modes is high, one concludes that this mode is mainly
responsible for the noise radiation of this tone component. In the acoustic mode
distribution of the third blade tone harmonic, the radial modes with the azimuthal order
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Figure 13. The radial mode distribution of the 2nd to 4th harmonics at maximum thrust; equal blade numbers
B1 =B2 =10, rotor distance RD=97·3 mm; blade passing frequency=1930 Hz (kR=7·1). (a) 2×blade
passing frequency; (b) 3×blade passing frequency; (c) 4×blade passing frequency. (, Rotor 1/rotor 2; w, rotor
2/struts; q, rotor 1/struts; ×, rotor 1/rotor 2 and rotor 1/struts or rotor 2/struts; R, other modes. ——, n=0;
–––, n=1; ---, n=2. b=−6°/−6°; prel =1·0; M=0·22; a=0.

m=−10 are the dominant ones, and together the radial modes with m=10, which rotate
in the opposite direction, they form an azimuthal standing wave pattern in the exit plane
of the propfan. Such a circumferential pressure distribution was also found in the radiated
sound field, as was reported by Dobrzynski et al. [7]. The mode distribution of the fourth
blade tone harmonic is dominated by the radial mode n=0; this is true for all azimuthal
mode numbers: i.e., for the modes generated directly by rotor/rotor interaction as well as
for the modes produced indirectly by mode transformation at the struts. Except for the
azimuthal mode m=0, the amplitudes of the radial modes n=1 and 2 are very small,
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so that one can assume (but not be certain) that the higher radial modes nq 2 are also
weak.

In summary, it is obvious from the experimental results discussed above that radial
modes of high order exist in the exit plane of the propfan and contribute to the noise
radiation depending on their acoustic radiation efficiency. These radial modes are
generated by the radial variation of the blade profiles, blade loading, mean flow velocity
and wakes. As a result, the aerodynamic interaction processes responsible for the tonal
the noise components are functions of the radial co-ordinate as well. At the low thrust
operating condition, prel =0·4, it was found that the radial mode n=0 is dominant for
all azimuthal mode orders m. The likely reason for this result is that the rotor speed is
low, and with it the frequencies of all tone components, so that most of the radial modes
with nq 0 are not propagational and occur only with low amplitudes in the exit plane.

5. CONCLUSIONS

Unsteady pressure measurements were performed in the exit plane of the CRISP 0·4 m
model to explore the dominant sound generation mechanisms and source regions of the
tonal noise components. The propfan model comprises two counter-rotating rotors of
400 mm diameter and a shroud, which is retained by seven struts located downstream of
the rotors. The investigations were carried out in co-operation with MTU, who developed
the CRISP concept. During the first set of experiments, rotors with ten blades each were
used. To reduce the noise, a second measurement series was performed with an unequal
number of blades on the rotors (B1/B2 =10/12) and with two axial distances between them.

The pressure fluctuations measured in the exit plane were resolved numerically into a
distribution of azimuthal modes m, and the azimuthal mode distribution determined for
different radial distances from the axis were used to calculate the radial modes Amn ,
separately for each azimuthal mode order m.

A theoretical analysis is presented which allows one to predict the various tone
components and the azimuthal mode orders m generated by the interaction of two rotors
with arbitrary blade numbers, speed and direction of rotation. This model can be used to
find suitable blade number combinations and rotor speed combinations which generate
mainly non-propagational modes, so that the overall noise emission is diminished.

At all operating conditions tested, only those modes were found to exist in the exit plane
and to contribute to the radiated noise field, which are propagational in the annular
cross-section of the exit.

For the case of equal blade numbers B1 =B2 =10, the blade passing frequency
component (H=10) is mainly generated by the interaction of the second rotor with the
struts and by a transformation of modes while passing through the struts; the interaction
between the rotors generates only non-propagational modes at the blade passing
frequency. However, at all higher blade tone harmonics (H=20, 30, 40, . . . ) the dominant
modes, which are mainly responsible for the noise radiation into the far field, are generated
by the rotor 1/rotor 2 interaction. The higher blade tone harmonics were found to have
the highest amplitudes in the exit plane as well as in the radiated sound field, and therefore
the rotor/rotor interaction is mainly responsible for the overall tone noise level of this test
configuration.

Applying the above theoretical analysis to the configuration with B1 =10 and B2 =12
blades, yields the result that all even harmonics of the rotor shaft frequency, i.e., H=2,
4, 6, . . . , can be produced. Furthermore, all rotor harmonics below the order H=22 are
generated as acoustic duct modes with high azimuthal mode order m which are not
propagational in the annular engine duct, and, therefore, can be expected to have small
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amplitudes in the exit plane. The theoretical considerations were confirmed by the
measurement results.

For the case of unequal blade numbers, measurements were carried out with two
different axial distances between the rotors. With the short distance, the harmonics
generated by the rotor/rotor interaction dominate the pressure spectrum averaged over the
outlet plane. The amplitudes of these tone components decrease by as much as 8 dB when
the axial distance between the rotors is increased from 97·3 mm (RD/R=0·487) to
177·3 mm (RD/R=0·887). Similar reductions can be expected in the acoustic far field. In
case of the large axial rotor distance, the shaft order harmonics generated by the
interaction between the rotors and the struts exhibit amplitudes similar to those of the
harmonics generated by the rotor/rotor interaction. Hence, for further noise reduction, the
axial distance between the rotors and the struts has to be enlarged as well.

Changing the blade numbers from B1/B2 =10/10 to B1/B2 =10/12 results in a reduction
of the overall tone noise levels when the propfan is operated in a condition of large thrust.
This experiment was made with the small axial distance between the rotors. The reason
for this result is that fewer propagational modes with a high radiation efficiency are
generated by the rotor/rotor interaction. In particular, the plane wave mode m=0 is not
present in the frequency range of interest.

The radial mode distributions have shown that modes with a higher order than n=0
exist in the exit plane and contribute to the sound radiation, depending on their radiation
efficiency.

It was shown that the aerodynamic interaction processes responsible for the blade tone
noise of the propfan, i.e., intake flow/rotor 1, rotor 1/rotor 2, rotor 1/struts and rotor
2/struts, generate different sets of azimuthal modes for each tone component. Since the
actual mode distributions in the exit plane are known from the acoustic near field
measurements and subsequent mode analysis, one is able to conclude what the dominant
noise generation mechanisms are for each tone component. Furthermore, knowledge of
the mode structure of the sound field in the annulus of the propfan is necessary for the
optimum design of acoustic liners for the fan shroud and, also, for efficient application
of active noise control measures. Moreover, it was shown by Holste [1, 2] that experimental
data obtained in the acoustic near field of the propfan can be used to predict the radiated
sound in the acoustic far field very accurately. Since the near field measurements do not
require an acoustically ideal test environment, these measurements can also be performed
in a conventional test-bed installation, and therefore the experimental techniques presented
here, together with Holste’s prediction method, can be used to assess the tonal noise
characteristics of a new aircraft engine at a very early stage of its development. Naturally,
the more detailed the experimental near field data are, the more accurate the predicted far
field sound levels and distributions will be. The experimental methods presented here and
the prediction method described by Holste [1, 2] were developed and tested on a propfan
model; however, they are also applicable to other types of aircraft engines and
turbomachines.
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